Rényi Entropies for Free Field Theories

نویسندگان

  • Igor R. Klebanov
  • Silviu S. Pufu
  • Subir Sachdev
  • Benjamin R. Safdi
چکیده

Rényi entropies Sq are useful measures of quantum entanglement; they can be calculated from traces of the reduced density matrix raised to power q, with q ≥ 0. For (d + 1)dimensional conformal field theories, the Rényi entropies across S may be extracted from the thermal partition functions of these theories on either (d+1)-dimensional de Sitter space or R×H, where H is the d-dimensional hyperbolic space. These thermal partition functions can in turn be expressed as path integrals on branched coverings of the (d+ 1)-dimensional sphere and S × H, respectively. We calculate the Rényi entropies of free massless scalars and fermions in d = 2, and show how using zeta-function regularization one finds agreement between the calculations on the branched coverings of S and on S × H. Analogous calculations for massive free fields provide monotonic interpolating functions between the Rényi entropies at the Gaussian and the trivial fixed points. Finally, we discuss similar Rényi entropy calculations in d > 2. November 2011 ∗On leave from Joseph Henry Laboratories and Center for Theoretical Science, Princeton University. ar X iv :1 11 1. 62 90 v1 [ he pth ] 27 N ov 2 01 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The gravity dual of supersymmetric Rényi entropy

Supersymmetric Rényi entropies are defined for three-dimensional N = 2 superconformal field theories on a branched covering of a three-sphere by using the localized partition functions. Under a conformal transformation, the branched covering is mapped to S1 × H2, whose gravity dual is the charged topological AdS4 black hole. The black hole can be embedded into four-dimensional N = 2 gauged supe...

متن کامل

Rényi entropies of free bosons on the torus and holography

We analytically evaluate the Rényi entropies for the two dimensional free boson CFT. The CFT is considered to be compactified on a circle and at finite temperature. The Rényi entropies Sn are evaluated for a single interval using the two point function of bosonic twist fields on a torus. For the case of the compact boson, the sum over the classical saddle points results in the Riemann-Siegel th...

متن کامل

On the Statistical Estimation of Rényi Entropies

Estimating entropies is important in many fields including statistical physics, machine learning and statistics. While the Shannon logarithmic entropy is the most fundamental, other Rényi entropies are also of importance. In this paper, we derive a bias corrected estimator for a subset of Rényi entropies. The advantage of the estimator is demonstrated via theoretical and experimental considerat...

متن کامل

Random Quantum Channels Ii: Entanglement of Random Subspaces, Rényi Entropy Estimates and Additivity Problems

In this paper we obtain new bounds for the minimum output entropies of random quantum channels. These bounds rely on random matrix techniques arising from free probability theory. We then revisit the counterexamples developed by Hayden and Winter to get violations of the additivity equalities for minimum output Rényi entropies. We show that random channels obtained by randomly coupling the inpu...

متن کامل

Notes on quantum entanglement of local operators

This is an expanded version of the short report arXiv:1401.0539, where we studied the time evolution of (Renyi) entanglement entropies for the excited state defined by acting a given local operator on the ground state. In the present paper, we introduce (Renyi) entanglement entropies of given local operators which are defined by late time values of excesses of (Renyi) entanglement entropies. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011